
Conjunctive	Queries

Advanced	Topics	in	Foundations	of	Databases,	University	of	Edinburgh,	2019/20

So	far

• The main languages for querying relational databases are:

− Relational Algebra (RA)

− Domain Relational Calcuclus (DRC)

− Tuple Relational Calculus (TRC)

• Evaluation is decidable, and highly tractable indata complexity

− Foundations of the database industry

− The core of SQL is equally expressive to RA/DRC/TRC

RA =	DRC =	TRC

(under	the	active	domain	semantics)

• Satisfiability, equivalence and containment are undecidable

− Perfect query optimization is impossible

= Conjunctive	Queries

=		{σ,π,⋈}-fragment	of	relational	algebra

=		relational	calculus	without	¬,	∀,	∨

=		simple	SELECT-FROM-WHERE	SQL	queries	
= (only	AND	and equality	in	the	WHERE	clause)

A	Crucial	Question

Are	there	interesting	sublanguages	of	RA/DRC/TRC for	which	perfect	

query	optimization	is	possible?

Q(x)		:= ∃y (R1(v1)		∧ ⋯ ∧ Rm(vm))

Syntax	of	Conjunctive	Queries	(CQ)

• R1,…,Rm are	relations

• x,	y,	v1,…,vm are	tuples	of	variables

• each	variable	mentioned	in	vi appears	either	in	x or	y

• the	variables	in	x are	free	called	distinguished	or output	variables

It	is	very	convenient	to	see	conjunctive	queries	as	rule-based	queries	of	the	form

Q(x)		:- R1(v1),…,Rm(vm)

this	is	called	the	body of	Q that	can	be	seen	as	a	set	of	atoms

{z	|	∃x∃y	Flight(x,y,z)}

Conjunctive	Queries:	Example	1

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	all	the	airlines

πairline Flight

{BA,	U2,	OS}

Q(z)		:- Flight(x,y,z)

{x	|	∃y	Airport(x,y)	 	∧ y	=	London}

πcode (σcity=‘London’			Airport)

Conjunctive	Queries:	Example	2

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	codes	of	the	airports	in	London

{LHR,	LGW}

Q(x)		:- Airport(x,y),	y	=	London

πcode (σcity=‘London’			Airport)

Conjunctive	Queries:	Example	2

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	codes	of	the	airports	in	London

{LHR,	LGW}

Q(x)		:- Airport(x,London){x	|	∃y	Airport(x,y)	 	∧ y	=	London}

{z	|	∃x∃y∃u∃v Airport(x,u)	 	∧ u	=	London		∧ Airport(x,u)	 	∧ u	=	London}		∧ Flight(x,y,z)}

πairline ((Flight		⋈origin=code		(σcity=‘London’	 		Airport))	⋈destination=code		(σcity=‘Glasgow’			Airport))

Conjunctive	Queries:	Example	3

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	airlines	that	fly	directly	from	London	to	Glasgow

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

{U2}

Conjunctive	Queries:	Example	3

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	airlines	that	fly	directly	from	London	to	Glasgow

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

{U2}

Q(z)		:- Airport(x,London),	Airport(y,Glasgow),	Flight(x,y,z)

• Semantics	of	conjunctive	queries	via	the	key	notion	of	homomorphism

• A	substitution from	a	set	of	symbols	S to	a	set	of	symbols	T is	a	function	h	:	S→ T,	

i.e.,	h	is	a	set	of	mappings of	the	form	s	↦ t,	where	s	∈ S and	t	∈ T

• A	homomorphism from	a	set	of	atoms	A to	a	set	of	atoms	B	is	a	substitution												

h	:	terms(A)	→ terms(B)	such	that:

1. t	is	a	constant		⇒ h(t)	=	t

2. R(t1,…,tk)	∈ A	⇒ h(R(t1,…,tk))	 =	R(h(t1),…,h(tk))	 ∈ B

Homomorphism

(terms(A)	=	{t	|	t	is	a	variable	or	constant	that	occurs	in	A})

S5 = {P(x,y),	P(y,x),	P(y,y)}S4 = {P(x,x)}

S3 = {P(x,y),	P(y,x)}S2 = {P(x,y),	P(y,z),	P(z,x)}

S1 = {P(x,y),	P(y,z),	P(z,w)}

x y
x

y

z

x y z w

Exercise:	Find	the	Homomorphisms

x

x y

{x	↦ x,	 y	↦ y	,	z	↦ x	,	w	↦ y}{x	↦ x,	 y	↦ y	,	z	↦ z	,	w	↦ x}

{x	↦ x,	 y	↦ y}{x	↦ y,	 y	↦ x	,	z	↦ y}

{x	↦ y}

{x	↦ y,	 y	↦ x}

• A	match	of	a	conjunctive	query	Q(x1,…,xk)	:- body in	a	database	D is	a homomorphism	

h	such	that	h(body)	⊆ D

• The	answer to	Q(x1,…,xk)	:- body over	D is	the	set	of	k-tuples

Q(D)		:=		{(h(x1),…, h(xk))	|	h	is	a	match	of	Q in	D}

• The	answer	consists	of	the	witnesses	for	the	distinguished	variables	of	Q

Semantics	of	Conjunctive	Queries

Conjunctive	Queries:	Example

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	airlines	that	fly	directly	from	London	to	Glasgow

Q(z)		:- Airport(x,London),	 Airport(y,Glasgow),	 Flight(x,y,z)

{x	↦ LGW,	 y↦ GLA,	 z↦ U2}

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Complexity	of	CQ

Theorem: It	holds	that:

• BQE(CQ)	is	NP-complete	(combined	complexity)

• BQE[D](CQ)	is	NP-complete,	for	a	fixed	database	D	(query	complexity)

• BQE[Q](CQ)	is	in	LOGSPACE,	for	a	fixed	query	Q ∈ CQ (data	complexity)

Proof:

(NP-membership) Consider	a	database	D,	and	a	Boolean	CQ	Q	:- body

Guess	a	substitution	h	:	terms(body)	→ terms(D)

Verify	that	h	is	a	match	of	Q in	D,	i.e.,	h(body)	⊆ D

(NP-hardness)Reduction	from	3-colorability

(LOGSPACE-membership) Inherited	from	BQE[Q](DRC)

NP-hardness

(NP-hardness)Reduction	from	3-colorability

3COL

Input:	an	undirected	graph	G =	(V,E)

Question: is	there	a	function	c	:	V	→ {R,G,B}	such	that	(v,u)	∈ E	⇒ c(v)	≠ c(u)?

therefore,	G is	3-colorable		iff there	is	a	match	of	QG in	D =	{E(x,y),E(y,z),E(z,x)}

the	Boolean	CQ	that	represents	G

Lemma: G is	3-colorable		iff G can	be	mapped	to	K3,	i.e.,	G
hom

Complexity	of	CQ

Theorem: It	holds	that:

• BQE(CQ)	is	NP-complete	(combined	complexity)

• BQE[D](CQ)	is	NP-complete,	for	a	fixed	database	D	(query	complexity)

• BQE[Q](CQ)	is	in	LOGSPACE,	for	a	fixed	query	Q ∈ CQ (data	complexity)

Proof:

(NP-membership) Consider	a	database	D,	and	a	Boolean	CQ	Q	:- body

Guess	a	substitution	h	:	terms(body)	→ terms(D)

Verify	that	h	is	a	match	of	Q in	D,	i.e.,	h(body)	⊆ D

(NP-hardness)Reduction	from	3-colorability

(LOGSPACE-membership) Inherited	from	BQE[Q](DRC)

What	About	Optimization	of	CQs?

EQUIV(CQ)

Input:	two	queries	Q1 ∈ CQ	and Q2 ∈ CQ

Question:Q1≡	Q2?	 or		Q1(D)	=	Q2(D)	for	every	(finite)	database	D?

SAT(CQ)

Input:	a	query	Q ∈ CQ

Question: is	there	a	(finite)	database	D such	that	Q(D)	is	non-empty?	

CONT(CQ)

Input:	two	queries	Q1 ∈ CQ	and Q2 ∈ CQ

Question:Q1⊆	Q2?	 or		Q1(D)	⊆Q2(D)	for	every	(finite)	database	D?

Canonical	Database

• Convert	a	conjunctive	query	Q into	a	database	D[Q]	 - the	canonical	database of	Q

• Given	a	conjunctive	query	of	the	form	Q(x)		:- body, D[Q] is	obtained	from	body	by	

replacing	each	variable	x	with	a	new	constant	c(x)	=	x

• E.g.,	given	Q(x,y)	:- R(x,y),	P(y,z,w),	R(z,x),	then	D[Q]	=	{R(x,y),	P(y,z,w),	R(z,x)}

• Note:	The	mapping	c	:	{variables	in	body}	→ {new	constants}	is	a	bijection,	where	

c(body)	=	D[Q] and	c-1(D[Q])	=	body

SAT(CQ)

Input:	a	query	Q ∈ CQ

Question: is	there	a	(finite)	database	D such	that	Q(D)	is	non-empty?	

Satisfiability of	CQs

Theorem:A	query	Q ∈ CQ	is always	satisfiable - SAT(CQ)	∈ O(1)-time

Proof:Due	to	its	canonical	database	 - Q(D[Q])	is	trivially	non-empty	

Equivalence	and	Containment	of	CQs

Q1		≡Q2				iff Q1		⊆Q2 and Q2	⊆Q1

Q1	⊆Q2				iff Q1		≡ (Q1 ∧Q2)

…thus,	we	can	safely	focus	on	CONT(CQ)

EQUIV(CQ)

Input:	two	queries	Q1 ∈ CQ	and Q2 ∈ CQ

Question:Q1≡	Q2?	 or		Q1(D)	=	Q2(D)	for	every	(finite)	database	D?

CONT(CQ)

Input:	two	queries	Q1 ∈ CQ	and Q2 ∈ CQ

Question:Q1⊆	Q2?	 or		Q1(D)	⊆Q2(D)	for	every	(finite)	database	D?

Homomorphism	Theorem

A	query	homomorphism from	Q1(x1,…,xk)	 	:- body1 to	Q2(y1,…,yk)	 	:- body2

is	a	substitution	h	:	terms(body1)	→ terms(body2)	 such	that:

1. h	is	a	homomorphism	 from	body1 to	body2

2. (h(x1),…,h(xk))	 	=		(y1,…,yk)

Homomorphism	Theorem: Let	Q1 and	Q2 be	conjunctive	queries.	It	holds	that:

Q1		⊆Q2				iff there	exists	a	query	homomorphism	 from	Q2 to	Q1

Homomorphism	Theorem:	Example

Q1(x,y)		:- R(x,z),	S(z,z),	R(z,y)

x z yR R

S

Q2(a,b)		:- R(a,c),	S(c,d),	R(d,b)

a c dR S bR

We	expect	that	Q1		⊆Q2.	Why?

Homomorphism	Theorem:	Example

• h	is	a	query	homomorphism	 from	Q2 to	Q1 ⇒ Q1		⊆Q2

• But,	there	is	no	homomorphism	 from	Q1 to	Q2	 ⇒ Q1		⊂Q2

Q1(x,y)		:- R(x,z),	S(z,z),	R(z,y)

Q2(a,b)		:- R(a,c),	S(c,d),	R(d,b)

h	=	{a	↦ x,	b	↦ y,	c	↦ z,	d	↦ z}

Homomorphism	Theorem:	Proof

Assume	that	Q1(x1,…,xk)		:- body1 and	Q2(y1,…,yk)	 	:- body2

(⇒)	Q1		⊆Q2				⇒ there	exists	a	query	homomorphism	 from	Q2 to	Q1

• Clearly,	(c(x1),…,c(xk))	∈ Q1(D[Q1])		- recall	that	D[Q1]	=	c(body1)

• Since	Q1	⊆Q2,	we	conclude	that	(c(x1),…,c(xk))	∈ Q2(D[Q1])

• Therefore,	there	exists	a	homomorphism	 h	such	that	h(body2)	⊆ D[Q1]	=	c(body1)

and	h((y1,…,yk))	 	=		(c(x1),…,c(xk))

• By	construction,	c-1(c(body1))	=	body1
and	c-1((c(x1),…,c(xk)))	=	(x1,…,xk)

• Therefore,	c-1	∘ h	is	a	

• query	homomorphism	 from	Q2 to	Q1

Q2(y1,…,yk)	 	:- body2

Q1(c(x1),…,c(xk))	 	:- c(body1)

Q1(x1,…,xk)		:- body1

h

c-1
c-1	∘ h

Homomorphism	Theorem:	Proof

Assume	that	Q1(x1,…,xk)		:- body1 and	Q2(y1,…,yk)	 	:- body2

(⇐)	Q1	⊆Q2				⇐ there	exists	a	query	homomorphism	 from	Q2 to	Q1

• Consider	a	database	D,	and	a	tuple	t such	that	t ∈ Q1(D)

• We	need	to	show	that	t ∈ Q2(D)

• Clearly,	there	exists	a	homomorphism	g	such	that	g(body1)	⊆ D	and	g((x1,…,xk))	 =	t

• By	hypothesis,	there	exists	a	query	homomorphism	h	from	Q2 to	Q1

• Therefore,	g(h(body2))	⊆ D	and	

g(h((y1,…,yk)))	 =	t,	which	implies	that	t ∈ Q2(D) Q2(y1,…,yk)	 	:- body2

Q1(x1,…,xk)		:- body1

t D

h

g
g	∘ h

Existence	of	a	Query	Homomorphism

Theorem: Let	Q1 and	Q2 be	conjunctive	queries.	The	problem	of	deciding	whether	

there	exists	a	query	homomorphism	 from	Q2 to	Q1	is	NP-complete

Proof:

(NP-membership)Guess	a	substitution,	and	verify	that	is	a	query	homomorphism

(NP-hardness)Straightforward	reduction	from	BQE(CQ)

By	applying	the	homomorphism	 theorem	we	get	that:

Corollary: EQUIV(CQ)	and	CONT(CQ)	are	NP-complete

Recap

L ∈ {RA,DRC,TRC}

UNDECIDABLE PSPACE NP LOGSPACE O(1)-time

EQUIV(L)

CONT(L)

SAT(L)

BQE(L)
(combined,	 query)

QOT(L)
(combined,	 query)

BQE(CQ)
(combined,	 query)

QOT(CQ)
(combined,	 query)

EQUIV(CQ)

CONT(CQ)
BQE(L)
(data)

QOT(L)
(data)

SAT(CQ)

Minimizing	Conjunctive	Queries

• Goal:minimize	the	number	of	joins	in	a	query

• A	conjunctive	query	Q1	is	minimal if	there	is	no	conjunctive	query	Q2	such	that:

1. Q1≡ Q2

2. Q2	has	fewer	atoms	than	Q1

• The	task	of	CQ	minimization is,	given	a	conjunctive	query	Q,	to	compute	a	

minimal	one	that	is	equivalent	to	Q

Minimization	by	Deletion

By	exploiting	the	homomorphism	 theorem	we	can	show	the	following:

Theorem: Consider	a	conjunctive	query	Q1(x1,…,xk)	 	:- body1.	

If	Q1	is	equivalent	to	a	conjunctive	query	Q2(y1,…,yk)	 	:- body2 where	|body2|	<	|body1|,	

then	Q1 is	equivalent	to	a	query	Q3(x1,…,xk)	 	:- body3	such	that	body3 ⊆ body1

The	above	theorem	says	that	to	minimize	a	conjunctive	query	Q1(x)		:- body we	simply	

need	to	remove	some	atoms	from	body

Minimization	Procedure

Minimization(Q(x)		:- body)

Repeat	until	no	change

choose	an	atom	α ∈ body

if there	is	a	query	homomorphism	 from	Q(x)		:- body	to	Q(x)		:- body ∖ {α}

then	body	:=	body ∖ {α}

ReturnQ(x)		:- body

Note:	if	there	is	a	query	homomorphism	 from	Q(x)		:- body	to	Q(x)		:- body ∖ {α},	

then	the	two	queries are	equivalent	since	there	is	trivially	a	query	homomorphism	

from	the	latter	to	the	former	query

Minimization	Procedure:	Example

Q(x)		:- R(x,y),	R(x,b),	R(a,b),	R(u,c),	R(u,v),	S(a,c,d)

(a,b,c,d are	constants)

Q(x)		:- R(x,y),	R(x,b),	R(a,b),	R(u,c),	R(u,v),	S(a,c,d)

{y	↦ b}

Q(x)		:- R(x,y),	R(x,b),	R(a,b),	R(u,c),	R(u,v),	S(a,c,d)

{v	↦ c}

minimal	query

Note:	the	mapping	x	↦ a	is	not	valid	since	x	is	a	distinguished	variable

Uniqueness	of	Minimal	Queries

Natural	question: does	the	order	in	which	we	remove	atoms	from	the	body	of	the	input	

conjunctive	query	matter?

Theorem: Consider	a	conjunctive	query	Q.	Let	Q1	and	Q2 be	minimal	conjunctive	queries	

such	that	Q1	≡Q and	Q2	≡Q.	Then,	Q1	and	Q2 are	isomorphic	(i.e.,	they	are	the	same	up	

to	variable	renaming)

Therefore,	given	a	conjunctive	query	Q,	the	result	of	Minimization(Q)	is	unique	(up	to	

variable	renaming)	and	is	called	the	core of	Q

Recap

• The	main	relational	query	languages	 - RA/DRC/TRC

‒ Evaluation	is	decidable	 - foundations	of	the	database	industry

‒ Perfect	query	optimization	is	impossible

• Conjunctive	queries	 - an	important	query	language

‒ All	the	relevant	algorithmic	problems	are	decidable

‒ Query	minimization

*under	the	active	domain	semantics

RA =	DRC =	TRC*

CQ

